How Plants Sense Wounds: Damaged-Self Recognition Is Based on Plant-Derived Elicitors and Induces Octadecanoid Signaling

نویسندگان

  • Martin Heil
  • Enrique Ibarra-Laclette
  • Rosa M. Adame-Álvarez
  • Octavio Martínez
  • Enrique Ramirez-Chávez
  • Jorge Molina-Torres
  • Luis Herrera-Estrella
چکیده

BACKGROUND Animal-derived elicitors can be used by plants to detect herbivory but they function only in specific insect-plant interactions. How can plants generally perceive damage caused by herbivores? Damaged-self recognition occurs when plants perceive molecular signals of damage: degraded plant molecules or molecules localized outside their original compartment. METHODOLOGY/PRINCIPAL FINDINGS Flame wounding or applying leaf extract or solutions of sucrose or ATP to slightly wounded lima bean (Phaseolus lunatus) leaves induced the secretion of extrafloral nectar, an indirect defense mechanism. Chemically related molecules that would not be released in high concentrations from damaged plant cells (glucose, fructose, salt, and sorbitol) did not elicit a detectable response, excluding osmotic shock as an alternative explanation. Treatments inducing extrafloral nectar secretion also enhanced endogenous concentrations of the defense hormone jasmonic acid (JA). Endogenous JA was also induced by mechanically damaging leaves of lima bean, Arabidopsis, maize, strawberry, sesame and tomato. In lima bean, tomato and sesame, the application of leaf extract further increased endogenous JA content, indicating that damaged-self recognition is taxonomically widely distributed. Transcriptomic patterns obtained with untargeted 454 pyrosequencing of lima bean in response to flame wounding or the application of leaf extract or JA were highly similar to each other, but differed from the response to mere mechanical damage. We conclude that the amount or concentration of damaged-self signals can quantitatively determine the intensity of the wound response and that the full damaged-self response requires the disruption of many cells. CONCLUSIONS/SIGNIFICANCE Numerous compounds function as JA-inducing elicitors in different plant species. Most of them are, contain, or release, plant-derived molecular motifs. Damaged-self recognition represents a taxonomically widespread mechanism that contributes to the perception of herbivore feeding by plants. This strategy is independent of insect-derived elicitors and, therefore, allows plants to maintain evolutionary control over their interaction with herbivores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway.

Jasmonic acid, synthesized from linolenic acid (the octadecanoid pathway), has been proposed to be part of a signal transduction pathway that mediates the induction of defensive genes in plants in response to oligouronide and polypeptide signals generated by insect and pathogen attacks. We report here that the induction of proteinase inhibitor accumulation in tomato leaves by plant-derived olig...

متن کامل

Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals.

The activation of plant defensive genes in leaves of tomato plants in response to herbivore damage or mechanical wounding is mediated by a mobile 18-amino acid polypeptide signal called systemin. Systemin is derived from a larger, 200-amino acid precursor called prosystemin, similar to polypeptide hormones and soluble growth factors in animals. Systemin activates a lipid-based signaling cascade...

متن کامل

An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack.

The activation of defense genes in tomato plants has been shown to be mediated by an octadecanoic acid-based signaling pathway in response to herbivore attack or other mechanical wounding. We report here that a tomato mutant (JL5) deficient in the activation of would-inducible defense genes is also compromised in resistance toward the lepidopteran predator Manduca sexta (tobacco hornworm). Thus...

متن کامل

Bacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants

Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...

متن کامل

An Octadecanoid Pathway Mutant (JL5) of Tomato 1s Compromised in Signaling for Defense against lnsect Attack

The activation of defense genes in tomato plants has been shown to be mediated by an octadecanoic acid-based signaling pathway in response to herbivore attack or other mechanical wounding. We report here that a tomato mutant (JL5) deficient in the activation of wound-inducible defense genes is also compromised in resistance toward the lepidopteran predator Manduca sexta (tobacco hornworm). Thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012